熱力學實驗: A. 熱輻射 和 B.熱引擎與氣體定律

Thermodymanics Labs.: A. Thermal Radiation & B. Thermal Engine and Gas Law

編寫者:國立清華大學物理系陳淑敏、戴明鳳 編寫日期:2011/10

實驗 A: 熱輻射(Thermal Radiation)

一、實驗目的:觀察下列三項重要的熱力學現象:

- 1. 物體表面材質、顏色、粗糙度(roughness)和熱源溫度對熱輻射的影響,
- 2. 探討熱力學中著名的史蒂芬-波茲曼輻射定律(Stefan-Boltzmann Law)。
- 3. 點熱源的平方反比輻射定律(inverse square law for thermal radiation)

二、原理:請參閱普物課本熱力學章節,或上網查詢。實驗前應知道的背景知識:

- 1. 何謂史蒂芬-波茲曼輻射定律(Stefan-Boltzmann Law),即高溫時的輻射定律。
- 2. 一般室溫環境範圍的史蒂芬-波茲曼輻射定律的主要公式,即低溫時的輻射定律。
- 3. 預測物體表面材質、顏色、粗糙度(roughness)和環境溫度對熱輻射的影響
- 4. 史蒂芬-波茲曼輻射定律(Stefan-Boltzmann Law)的適用範圍

三、實驗器材:如圖1所示

 1. 熱輻射體
 1台
 7. 歐姆計(三用電表電阻模式)1台

 2. 熱感應器
 1組
 8. 電流計(三用電表電流模式)1台

 3. 玻璃
 1片
 9. 長尺
 1支

 4. 史蒂芬-波茲曼燈泡
 1組
 10. 隔熱板
 1片

 5. 低壓直流電源供應器
 1台
 11. 隔熱手套
 1套

6. 毫伏特計(三用電表電壓模式) 1台

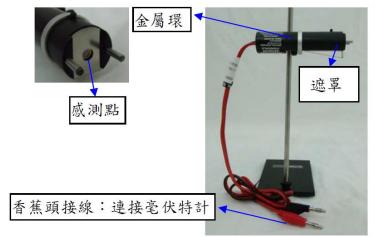
圖1實驗儀器與器材

熱力學實驗 第 1 頁,共 18 頁

四、儀器介紹與注意事項

- 1. 熱感應器(Radiation Sensor):如圖 2 所示
 - (1) **用途**:量測波長介於 0.5-40 μm 波段間之紅外光所產生之熱輻射的「相對強度」。
 - (2) **測量原理**: 所測得的紅外光強度信號,經感應器內部的光電轉換電路,將光強度轉換成微伏(μV)至 100 毫伏(mV)範圍的直流電壓輸出。實驗者可用毫伏特計或具高靈敏度之三用電表的電壓檔,經此感應器電壓輸出端點,測量此電壓。
 - (3) 操作方法:為避免感應器內的光接收器長期受紅外光照射,以致縮減其使用壽命,故 感應器的光感測端前附有一遮罩(shutter,或稱檔板)裝置。
 - (a) 感測器上銀色的金屬環往前推及往後推分別為打開及關閉遮罩用。
 - (b) 感應器前端的兩凸出端點除用以避免感應器和輻射源太過接近外,也可用來固定 感應器到熱輻射源的相對距離。
 - (c) 當不測量時,應將遮罩關閉,遮住光感測器使不接受光照射,以避免感應器因照 光使參考溫度變化而造成對應的測量電壓改變。

★注意:因推動金屬環時,容易使感應器的位置也產生移動。但在實驗 A3 及 A4 中, 感應器與輻射源的相對距離必需固定,且所測得之輻射值的精確度取決於此距離是 否精準。因此,可使用隔熱板代替金屬遮罩,於實驗時,將隔熱板置放在感應器與 熱輻射源中間。


(4) 儀器規格:

溫度範圍:-65 到 85℃

接受之最大功率:0.1 Watts/cm²

波長範圍: 0.6 到 30 µm

訊號輸出:線性範圍為 10⁻⁶ 到 10⁻¹ Watts/cm²

金屬環往後推, 遮罩關

金屬環往前推, 遮罩開

圖 2 熱感應器實體照片

2. 熱輻射體(Thermal Radiation Cube):實體照片見圖 3。

(1) 結構:

(a) 上方是一鋁製的立方腔體,腔體中間附有一個 100 W 的鎢絲燈泡,作為加熱源。

熱力學實驗 第 2 頁,共 18 頁

- (b) 腔體四周提供四個條件不同的輻射表面: (i)經過精密拋光的鋁面、(ii)經過噴砂處理的鋁面, (iii)噴了黑漆的面、(iv)塗成白色的表面。
- (c) 下方為加熱電路和控制單元。
- (2) 用途:加熱腔體,觀察不同條件之表面的熱輻射效應。
- (3) 使用方法:
 - (a) 溫度調節器:用以調控加熱燈泡的能量,使腔體內部產生一高溫輻射源。
 - (b) 熱電阻值輸出端:將歐姆計(或使用多功能電表的電阻檔)的兩測量導線連接到標註 "THERMISTOR"的兩香蕉插座上(位於圖 3 所示之下方單元的右側面),即可量測 得腔體內部加熱所產生的熱電阻值,再根據表一或張貼在熱輻射體背面的換算表, 即可以所測得的熱電阻值換算得腔體內之燈泡加熱所產生的溫度。

★注意事項:加熱時,輻射體表面為高溫,小心被燙傷。若要接觸或移動,請帶隔熱手套。

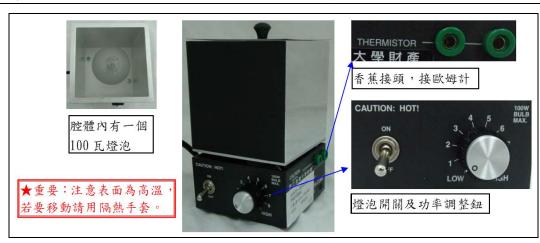


圖 3 熱輻射體之實體照片

表 1 熱輻射腔體內之溫度與輸出之電阻值的換算表

Therm. Res. (Ω)	Temp. (°C)	Therm. Res. (Ω)	Temp. (°C)	Therm. Res. (Ω)	Temp. (°C)	Therm. Res. (Ω)	Temp.	Therm. Res. (Ω)	Temp.	Therm. Res. (Ω)	Temp. (°C)
207,850	10	66,356	34	24,415	58	10,110	82	4,615.1	106	2,281.0	130
197,560	11	63,480	35	23,483	59	9,767.2	83	4,475.0	107	2,218.3	131
187,840	12	60,743	36	22,590	60	9,437.7	84	4,339.7	108	2,157.6	132
178,650	13	58,138	37	21,736	61	9,120.8	85	4,209.1	109	2,098.7	133
169,950	14	55,658	38	20,919	62	8,816.0	86	4,082.9	110	2,041.7	134
161,730	15	53,297	39	20,136	63	8,522.7	87	3,961.1	111	1,986.4	135
153,950	16	51,048	40	19,386	64	8,240.6	88	3,843.4	112	1,932.8	136
146,580	17	48,905	41	18,668	65	7,969.1	89	3,729.7	113	1,880.9	137
139,610	18	46,863	42	17,980	66	7,707.7	90	3,619.8	114	1,830.5	138
133,000	19	44,917	43	17,321	67	7,456.2	91	3,513.6	115	1,781.7	139
126,740	20	43,062	44	16,689	68	7,214.0	92	3,411.0	116	1,734.3	140
120,810	21	41,292	45	16,083	69	6,980.6	93	3,311.8	117	1,688.4	141
115,190	22	39,605	46	15,502	70	6,755.9	94	3,215.8	118	1,643.9	142
109,850	23	37,995	47	14,945	71	6,539.4	95	3,123.0	119	1,600.6	143
104,800	24	36,458	48	14,410	72	6,330.8	96	3,033.3	120	1,558.7	144
100,000	25	34,991	49	13,897	73	6,129.8	97	2,946.5	121	1,518.0	145
95,447	26	33,591	50	13,405	74	5,936.1	98	2,862.5	122	1,478.6	146
91,126	27	32,253	51	12,932	75	5,749.3	99	2,781.3	123	1,440.2	147
87,022	28	30,976	52	12,479	76	5,569.3	100	2,702.7	124	1,403.0	148
83,124	29	29,756	53	12,043	77	5,395.6	101	2,626.6	125	1,366.9	149
79,422	30	28,590	54	11,625	78	5,228.1	102	2,553.0	126	1,331.9	150
75,903	31	27,475	55	11,223	79	5,066.6	103	2,481.7	127		
72,560	32	26,409	56	10,837	80	4,910.7	104	2,412.6	128		
69,380	33	25,390	57	10,467	81	4,760.3	105	2,345.8	129		

熱力學實驗 第 3 頁,共 18 頁

- 3. 史蒂芬-波茲曼燈泡(Stefan-Boltzmann Lamp):見圖 4
 - (1) **用途**:可視為近似點狀的高溫熱輻射源(point-like high temperature thermal source),可作為下列兩驗證實驗的理想熱輻射源。
 - (a) 高溫之史蒂芬-波茲曼定律: 當熱輻射體的溫度 T 遠高於環境的參考室溫 T_{ref} 時($T>> T_{\text{ref}}$),則 $T^4>> T_{\text{ref}}^4$,故可忽略室溫之環境背景溫度的影響,而將蒂芬-波茲曼定律簡化為熱輻射量正比於輻射體之溫度的四次方之現象。
 - (b) 點熱輻射之平方反比定律:若適當擺置史蒂芬-波茲曼燈,則可將之視為點近似的熱 光源。
 - (2)操作:藉由調整輸入燈泡兩端的電壓,可使燈絲的溫度上升到接近 3000℃;輸入的最大電壓值為13 V,最小電流量為2 A,最大電流量為3A。重要:加熱燈泡的電壓值不可超過13V,否則會燒壞燈泡。

★重要:燈泡之電壓不能超過 13V,否則會燒壞燈泡。

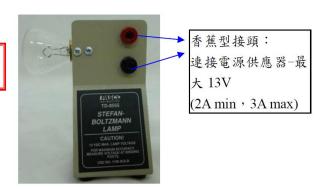


圖 4 史蒂芬-波茲曼燈泡

- (3) **燈絲的溫度測量:**藉由量測燈泡的電壓 V 及電流 I 求得。將量得的電壓 V 除以電流 I ,得燈絲的電阻值 R ,再根據表二廠商所提供的該燈絲之電阻-溫度轉換表,即可獲得燈絲的溫度值。
 - (a) 燈泡溫度接近室溫:燈絲的溫度可根據電阻值的溫度係數 α 直接計算而得:

$$T = \frac{R - R_{ref}}{\alpha R_{ref}} + T_{ref}$$

式中, T= 燈泡的溫度, R= 燈泡溫度為 T 時的電阻值(圖 5 中以 R_T 表示) $T_{\text{ref}} =$ 參考溫度(通常為室溫), $R_{\text{ref}} =$ 溫度 T_{ref} 下的電阻值 (或以 R_{300K} 表示) $\alpha =$ 燈絲之電阻值的溫度係數(鎢絲的 $\alpha = 4.5 \times 10^{-3} \text{K}^{-1}$)

- (b) 温度遠高於室溫:α 不為常數,因此上面公式並不正確。此時,燈絲的温度依下列 步驟決定:
 - a. 鎢絲燈未加熱前, **先精確地量測鎢絲的室溫電阻值(R**ref)。鎢絲燈電阻值的精確度 很重要,否則會使經推算所得的鎢絲燈溫度值產生很大的誤差。
 - b. 加熱鎢絲燈,當鎢絲燈的溫度上升至一穩定溫度後,量測燈絲兩端點的電壓V及流經燈絲的電流I,則可得到燈絲的電阻值R=V/I。
 - c. 燈絲加熱後所測得的高溫電阻 R 除以室溫時所測得的電阻 R_{ref} , 得高溫對室溫的

熱力學實驗 第 4 頁, 共 18 頁

Relative Resistivity

R_{300K}

相對電阻比值 R/R_{ref} 或以 R_T/R_{300K} 表示。

d. 上步驟所得的相對電阻比值 R/R_{ref} 可根據圖 $5(以\ R_T/R_{300K}$ 表相對電阻比值 $R/R_{ref})$ 或表 2 之「鎢絲燈溫度與電阻之變化」關係圖或對照表推算出燈絲穩定受熱時的溫度 T 。

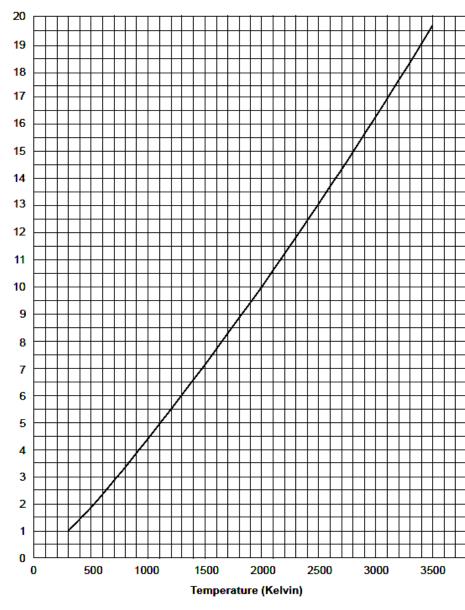


圖 5 鎢絲燈之溫度與電阻值關係圖

表 2 鎢絲燈之溫度與其對室溫之相對電阻值的換算表

R/R _{300K}	Temp °K	Resistivity μΩ cm									
1.0	300	5.65	5.48	1200	30.98	10.63	2100	60.06	16.29	3000	92.04
1.43	400	8.06	6.03	1300	34.08	11.24	2200	63.48	16.95	3100	95.76
1.87	500	10.56	6.58	1400	37.19	11.84	2300	66.91	17.62	3200	99.54
2.34	600	13.23	7.14	1500	40.36	12.46	2400	70.39	18.28	3300	103.3
2.85	700	16.09	7.71	1600	43.55	13.08	2500	73.91	18.97	3400	107.2
3.36	800	19.00	8.28	1700	46.78	13.72	2600	77.49	19.66	3500	111.1
3.88	900	21.94	8.86	1800	50.05	14.34	2700	81.04	26.35	3600	115.0
4.41	1000	24.93	9.44	1900	53.35	14.99	2800	84.70			
4.95	1100	27.94	10.03	2000	56.67	15.63	2900	88.33			

熱力學實驗 第 5 頁,共 18 頁

五、實驗步驟

1. 熱輻射實驗

1-1. 不同材質表面的熱輻射效應實驗

(1) 實驗裝置組裝:如圖 6 所示,架設所有實驗儀器和器材,兩個多功能電表分別選用 直流毫伏特及歐姆檔,並將兩組測試接線分別連接至熱感應器的感應電壓輸出端點 及熱輻射體的熱電阻輸出端。

圖 6 不同材質表面之熱輻射效應實驗之實驗器材架設

- (2) 打開熱輻射體的電源,並將燈泡之加熱功率調到 HIGH,觀察熱輻射體之熱電阻值的變化,當電阻值下降到 $40 \text{ k}\Omega$ 時,將加熱功率調降到 5.0。
- (3) 當熱輻射體達到熱平衡時,記錄電阻值(約為 $k\Omega$ 的數量級)。當電阻讀值在小數點以下第二位的數值緩慢下降時,即可開始量測。
- (4) 同時將熱感應器上的金屬環往前推,使打開遮罩,分別量測熱輻射體四面之輻射強度的輸出電壓(約為 mV 級電壓量),將結果記錄在表 3。
- (5) 改變熱輻射體的燈泡加熱功率為 7.0、HIGH, 重複上述步驟(3)和(4)的量測。

注意事項:

- (a) 實驗過程中,除正在量測熱感應器的相對輻射強度時之外,必須要將感應器的遮罩關閉或以隔熱板遮蔽熱感應器的偵測端,避免被熱輻射體的熱輻射持續照射,以致影響感應器的參考溫度 T_{ref} 。
- (b) 量測熱輻射強度時,可使熱感應器的前端突出點接觸待測之輻射表面,以確保每一 待測面與感應器間的距離是相同的。
- (c) 熱輻射體加熱後的溫度可能會上升到 120°C,小心不要碰觸熱輻射體,以免燙傷。

表3 不同材質表面之熱輻射實驗強度紀錄表

熱力學實驗 第 6 頁,共 18 頁

Power setting 5.0 Therm. Res. Ω Temperature C

Power setting 7.0
Therm. Res. Ω Temperature Γ

Power setting 10.0 Therm. Res. $__\Omega$ Temperature $__^{\circ}$

Surface Sensor
Black
White
Polished
Dull

Surface	Sensor
Black	
White	
Polished	
Dull	

Surface	Sensor
Black	
White	
Polished	
Dull	

1-2 不同物體的熱輻射現象:檢測周遭環境物體的熱輻射強度,比較其結果,並總結所觀察到的現象。

1-3 熱輻射的穿透與吸收

- (1) 將熱感應器放置於距離熱輻射體黑色表面約 5 cm 的地方,記錄熱感應器所偵測到相 對輻射強度的電壓信號(mV)。將透明玻璃片放置在感應器與輻射體中間,再次記錄 所得之輻射強度的電壓信號(mV)。根據所得結果,討論玻璃是否有隔熱效果?
- (2) 將熱輻射體的上蓋移開,將熱感應器放置在裸露之燈泡(簡稱裸燈)的上方,記錄輻射強度的電壓信號(mV)。將玻璃放置在感應器與裸燈中間,記錄輻射強度(mV)。更換不同物質屏蔽熱源並記錄其輻射強度(mV),總結所量測的結果,哪些物質能吸收輻射、哪些物質能讓輻射穿透?

2. 點熱源之輻射平方反比定律(Inverse Square Law)

- (1) 實驗裝置組裝:如圖7所示及下列所 述步驟架設所需的實驗器材。
 - (a) 將長尺固定在桌子上。
 - (b) 使史蒂芬-波茲曼燈泡的燈心水平 位對準直尺的零點位置。
 - (c) 調整熱感應器的高度使與史蒂芬-波茲曼燈泡的燈心等高。

圖 7 點輻射之平方反比定律實驗儀器架構照片

- (d) 盡可能使熱感應器與燈泡的燈 心共軸。並熱感應器前後移動時,仍能對準燈心。
- (e) 熱感應器的信號輸出端接上毫伏特計。
- (f) 直流電源供應器的輸出電壓端連接至燈泡的電源輸入端,但先不輸入電壓。

(2) 實驗測量:

- (a) 燈泡未輸入電源之前,使熱感應器沿著直尺向後移動,記錄每移動 10 cm 位置時,環境之熱輻射強度的相對輸出電壓(mV)於表 4。至少記錄到熱感應器離燈心 100cm 遠的距離, x₀。計算所量取之環境輻射強度的平均值,此為背景輻射量。
- (b) 打開直流電源供應器,輸出 10V 定電壓(不可超過 13 V)加熱史蒂芬-波茲曼燈泡。

熱力學實驗 第 7 頁,共 18 頁

- (c) 移動熱感應器的位置,改變其與燈泡間的直線距離,記錄在不同距離時,熱感應器 偵測到之輻射強度的相對電壓輸出值(mV)。實驗數據紀錄表可參考如表 5。
- (3) 數據分析:計算 $1/X^2$;將所量得之輻射強度減掉環境的平均輻射強度,記錄在表 5 中 的最後一欄位中。
- (4) 實驗數據作圖:畫出輻射強度 Rad 與 x 及 $1/x^2$ 的關係圖。

注意事項:

- (1) 供給燈泡的電壓切勿超過 13V。
- (2) 熱感應器需維持在室溫,所得讀數才會正確。因此,實驗過程中須將隔熱板放置在燈 泡與感應器中間(反射面朝燈泡)。當要讀取數據時,才將隔板移開,讀取數據後再迅 速將隔板放回。以避免熱威應器長時間受輻射照射,而使儀器的背景溫度上升,影響 測量的準確度。

熱感測器與熱源	環境的輻射強度的對應電
間的距離	壓(Ambient radiation level),
x_0 (cm)	$V_{\rm o}({ m mV})$
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	
平均輻射強度電	壓(average voltage), <vo></vo>
=	mV
平均偏差=	mV

表 4 周遭環境的熱輻射強度紀錄表 表 5 不同距離下之熱輻射強度記錄表

	- 1 1 4	DE RIP 1	○ //// 1₩ *	11 12 12 10 19/1 1
	X	Rad	$1/X^2$	Rad-Ambient
L	(cm)	(mV)	(cm ⁻²)	(mV)
	2.5			
	3.0			
	3.5			
	4.0			
	4.5			
	5.0			
	6.0			
	7.0			
	8.0			
	9.0			
	10.0			
	12.0			
	14.0			
	16.0			
	18.0			
	20.0			
	25.0			
	30.0			
	35.0			
	40.0			
	45.0			
	50.0			
	60.0			
	70.0			
	80.0			
	90.0			
	100.0			

- 3. 高溫史蒂芬-波茲曼定律(High-temperature Stefan-Boltzmann Law)
 - (1)實驗器材組裝:如圖 8 所示架設所有實驗裝置,並注意下列調整。
 - (a) 熱感應器的高度調到與燈心等高
 - (b) 感應器與燈心距離 6 cm。
 - (c) 隔熱板放置在燈泡與感應器中間。
 - (d) 在感應器感的熱範圍內不要有其他物體。

熱力學實驗 第8頁,共18頁

圖 8 高溫史蒂芬-波茲曼定律驗證實驗之儀器架設。

(2) 實驗測量:

- (a) 加熱燈泡前,先量測室溫的絕對溫度值 T_{ref} 及燈泡在室溫時的電阻 R_{ref} 。
- (b) 打開電源供應器,輸出 1 V 的定電壓,加熱燈泡。將感應器上的金屬環往前推,打開遮罩;並將隔熱板自熱感應器和燈泡間移開,讀取熱感應器測得之電壓並記錄電源供應器輸出至燈泡之電壓 V 與電流 I。測完後記得將隔熱板放回熱感應器和燈泡之間。
- (c) 改變加熱燈泡的定電壓值(1-12 V,切勿超過 13 V),重複上述步驟(3)的實驗,紀錄下以不同電壓加熱燈泡時,流經燈泡的電流 I 和熱輻射強度的輸出電壓 V。
- (d) 實驗數據紀錄表可參考表 6。
- (3) 數據分析:計算在每個電壓下燈絲的電阻值(V/I);利用前面儀器介紹與注意事項裡的第 3 項"史蒂芬-波茲曼燈泡"所介紹的方法決定燈絲的絕對溫度 T(K);並計算 T^4 將結果記錄在表 6 中。
- (4) 實驗數據作圖:畫出熱輻射強度之電壓(a)與T的線性關係圖,(b)與T的半對數關係圖,和(c)與 T^4 的線性關係圖。

注意事項:

- (1) 燈泡電壓勿超過 13 V, 否則會有燒壞之虞。
- (2) 感應器要維持在室溫讀數才會正確,因此實驗過程中須將隔熱板放置在燈泡與感應器中間(反射面朝燈泡),要讀取數據時才將隔板移開,讀取數據後再迅速將隔板放回。
- (3) 實驗過程中要小心不要碰觸到感應器及燈泡,以免改變兩者間的相對位置。

表 6 高溫史蒂芬-波茲曼定律實驗之數據登記表。在不同定電壓下被加熱的燈泡,距離燈心 6 cm 的熱感應器所偵測到的熱輻射強度和流經燈泡的電流。

熱力學實驗 第 9 頁,共 18 頁

$$\alpha = 4.5 \times 10^{-3} \text{ K}^{-1}$$

 T_{ref} (room temperature) = ____K

 R_{ref} (filament resistance at T_{ref}) = ____ Ω

	Data		C	alculation	ıs
V(Volts)	I(Amps)	Rad(mV)	R(Ohms)	T(K)	$T^4(K^4)$
1.00					
2.00					
3.00					
4.00					
5.00					
6.00					
7.00					
8.00					
9.00					
10.00					
11.00					
12.00					

六、實驗結果與分析:附件:實驗紀錄表格

實驗1:不同材質表面的熱輻射強度比較

表 3 不同材質表面的熱輻射強度

Power setting 5.0		Power setting 7.	0	Power setting 10	0.0
Therm. Res.	Ω	Therm. Res.	Ω	Therm. Res.	Ω
Temperature	$__^\circ\mathbb{C}$	Temperature	°C	Temperature	°C

Surface	Sensor
Black	
White	
Polished	
Dull	

Surface	Sensor
Black	
White	
Polished	
Dull	

Surface	Sensor
Black	
White	
Polished	
Dull	

實驗 2: 點熱源的輻射平方反比定律

- 1. 計算 1/X²;將所量得之輻射強度減掉環境輻射強度記錄在表 5 中。
- 2. 畫出輻射強度 Rad 與 x 及 $1/x^2$ 的關係圖。

表 4 周遭環境的熱輻射強度

表 5:不同距離下的熱輻射強度

X(cm)	Ambient Radiation Level (mV)			
10				
20				
30				
40				
50				
60				
70				
80				
90				
100				
Average Ambient				
Radiation	Level =			

X	Rad	$1/X^2$	Rad-Ambient
(cm)	(mV)	(cm ⁻²)	(mV)
2.5			
3.0			
3.5			
4.0			
4.5			
5.0			
6.0			
7.0			
8.0			
9.0			
10.0			
12.0			
14.0			
16.0			
18.0			
20.0			
25.0			
30.0			
35.0			
40.0			
45.0			
50.0			
60.0			
70.0			
80.0			
90.0			
100.0			

實驗 3: 高溫蒂芬-波茲曼輻射定律

- (1) **數據分析**:計算在每一電壓下燈絲的電阻值(V/I);利用前面儀器介紹與注意事項裡的第 3 項"史蒂芬-波茲曼燈泡"所介紹的方法決定燈絲的絕對溫度 T(K);並計算 T^4 。
- (2) 實驗數據作圖:畫出熱輻射強度之電壓(a)與T的線性關係圖,(b)與T的半對數關係圖,和(c)與 T^4 的線性關係圖。

表 6、不同輸出電壓下之熱輻射強度

熱力學實驗 第 11 頁,共 18 頁

 α = 4.5 × 10⁻³ K⁻¹

 T_{ref} (room temperature) = ____K

 R_{ref} (filament resistance at T_{ref}) = ____ Ω

	Data		Calculations			
V(Volts)	I(Amps)	Rad(mV)	R(Ohms)	T(K)	$T^4(K^4)$	
1.00						
2.00						
3.00						
4.00						
5.00						
6.00						
7.00						
8.00						
9.00						
10.00						
11.00						
12.00						

熱力學實驗

七、問題與討論:

- 1. 將熱輻射體四面的輻射能量高低排序,是否跟溫度有關?
- 2. 根據實驗結果,哪些材質能隔絕熱輻射、哪些材質不能隔絕熱輻射?
- 3. 平方反比定律實驗中,輻射強度與距離的關係圖,何者為線性?在所量測的範圍中是否都呈線性關係?
- 4. Stefan-Boltzmann 燈泡是否為一真正的點光源?如果不是,會對實驗有何影響?在所測得的實驗數據中是否看得到此現象?
- 5. 在史蒂芬—波茲曼定律中,輻射強度與絕對溫度的關係為何?是否在實驗量測範圍內皆維持此種關係?
- 6. 史蒂芬-波茲曼定律在真正黑體情況下才成立,實驗的燈泡是否為真正黑體?
- 7. 實驗過程中,除了燈泡的熱輻射外,還有哪些會影響實驗結果?

熱力學實驗 第 13 頁,共 18 頁

實驗 B: 熱引擎及氣體定律(Heat Engine and Gas Law)

一、實驗目的:

- 1. 藉著完成熱力循環的過程, 了解熱力過程及熱機的原理。
- 2. 探討熱力學中著名的氣體定律定律:波以爾定律、定壓及定容之查理-給呂薩克定律。

二、原理:

請參閱普物課本熱力學章節,或上網查詢。

三、預報時的問題:

- 1. 熱機作功原理
- 2. 何謂波以爾定律、定容及定壓之查理-給呂薩克定律

四、實驗器材:如圖9所示

1.	熱引擎	1台	8. 轉動感應器	1個
2.	支撐座及支撐桿	1 組	9. 温度感應器	1支
3.	砝碼掛勾	1個	10.壓力感應器	1個
4.	砝碼	1 組	11.GLX 圖形精靈	1台
5.	冷熱筒	2個	12.集水筒	共用
6.	尼龍線	1 綑	13.熱水瓶	共用
7.	抹布	2條(1條墊布	/1 條擦拭布)	

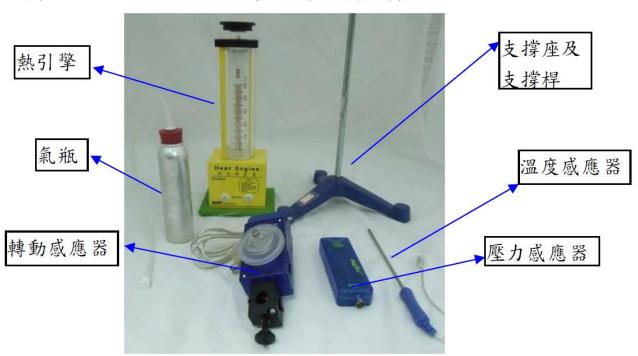


圖 9 實驗所須儀器

熱力學實驗 第 14 頁, 共 18 頁

五、儀器介紹與注意事項

熱引擎(Heat Engine)

圖 10 為本實驗所使用的熱引擎裝置。此裝置下方前端有兩個連接孔可連接氣瓶及 GLX 圖形精靈小電腦,可即時觀察氣體、溫度、壓力三者之間的關係。

★重要: 1.熱引擎設備不可浸在任何液體中。 2.實驗完畢或不用時,一定要將連接管夾鬆開,避免造成永久性變形。

圖 10、熱引擎裝置

六、實驗步驟

實驗 1: 熱引擎實驗

- 1. 按圖 11 將儀器架設好。
 - (1) 將支撐桿架設於支撐座上,並固定好熱引擎的位置。
 - (2) 架設轉動感應器於支撐桿上,調整轉動感應器使中間 滑輪在繞上線後可以對齊熱引擎的活塞。
 - (3) 線的一端綁在熱引擎的活塞上,另一端綁住掛勾及砝碼(砝碼與掛勾總重約為35g)。
 - (4) 調整熱引擎活塞的位置至距離底部約為 25~30ml 處後,將熱引擎管路的接口接上氣瓶,另一端接上壓力 感應器。
 - (5) 將壓力感應器、溫度感應器與轉動感應器接到 GLX 電腦上。
 - (6) 準備好冷熱筒,分別裝取熱水及冷水。

圖 11、熱引擎實驗裝置圖

- 2. 開啟 GLX 電腦,將電腦設定在壓力與體積的關係圖。
- 依照下列步驟,保持一定的速度完成,利用軟體記錄P-V數據,先將氣瓶放在冷水中, 將此點紀錄為a點並記錄溫度,在操作以下四個步驟前請先思考預測會有什麼現象發生。
 - (1) a→b:將200g 砝碼放在活塞平台上,記錄b點的溫度。
 - (2) b→c: 將氣瓶從冷水移到熱水中, 記錄 c 點的溫度。
 - (3) c→d:將200g 砝碼移開,記錄 d 點的溫度。
 - (4) d→a: 將氣瓶從熱水移回冷水中, 記錄 a 點的溫度。

熱力學實驗 第 15 頁,共 18 頁

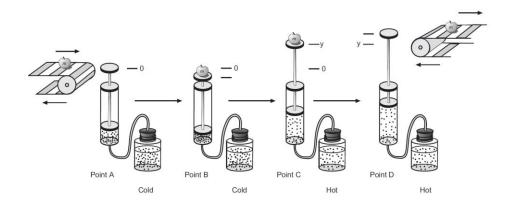


圖 12、熱引擎作功過程示意圖

- 4. 將循環圖的四個角落標上a、b、c、d並標示溫度,同時亦畫一箭頭表示循環方向。
- 5. 觀察每個過程的類型,如等壓或等溫狀態。
- 6. 利用公式 W=MgΔh 計算出因高度改變而產生的機械功,並與 P-V 圖之面積作比較。
- 7. 更換砝碼重量,重複步驟 3~6。

注意事項:

- 1. 熱水從熱水瓶中取水,水量為可浸滿氣瓶即可,熱水瓶三組共用一台,請依照分組號碼取水;取水時請小心。
- 2. 注意熱水瓶水位,若快取用完畢請通知助教加水避免空燒。
- 3. 盡可能在水溫保持不變下完成實驗。
- 4. 在裝置完成後,空氣即已完成密閉,不可再強拉或壓活塞。
- 5. 實驗時,將長型抹布墊在冷熱筒下方,避免溢出的水灑滿桌面。實驗中若水不小心溢出, 請隨時擦乾桌面。

實驗 2: 查理定律

- 1. 將熱引擎側放避免重力影響熱引擎內的氣體壓力。將活塞固定在 20ml 的位置,並氣瓶接在熱引擎管路的接口上,另一端連接溫度感應器。(實驗裝置如圖 13)
- 2. 熱筒裝熱水,將氣瓶放入熱水中,待氣瓶溫度與熱水溫度相等後記錄此時溫度與熱引擎 活塞的位置。
- 3. 在熱筒裡加入適量冷水,至少調配出5個溫度,分別記錄5個溫度下的溫度及活塞刻度。
- 4. 劃出溫度與體積的關係圖。

注意事項:

調配各種溫度時,每次加入少許冷水即可,若不小心水太滿須倒出,可先倒在集水桶裡。

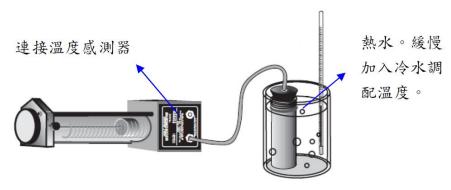


圖 13、查理定律實驗裝置圖

熱力學實驗 第 16 頁,共 18 頁

實驗 3:波以爾定律

- 1. 將熱引擎活塞拉到最高的位置,將壓力感應器接上管路的接口,將另一端的管路夾壓緊。
- 2. 記錄活塞在最高位置時的壓力與體積。
- 3. 利用砝碼將活塞往下壓,記錄不同壓力下相對應的體積(砝碼最多加到 200g)。
- 4. 書出壓力與體積的關係圖。

圖 14、波以爾定律實驗裝置圖

實驗 4: Combined Gas Law

- 1. 將氣瓶接上壓力感應器,放入熱筒裡,同時將溫度感應器接上小電腦,待氣瓶溫度與熱水溫度平衡後記錄此時的溫度與壓力。
- 2. 在熱筒裡加入適量冷水,至少調配出5種溫度並記錄5種溫度下相對應的壓力。
- 3. 畫出溫度與壓力的關係圖。

注意事項:

實驗完畢後務必將集水桶的水倒入水槽,桌子擦乾並擰乾抹布,將抹布披在桌子上。

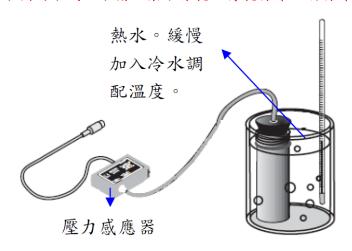


圖 15 Combined Gas Law 實驗裝置圖

七、問題與討論:

- 1. 要如何改善實驗 B 讓結果更精準?
- 2. 生活中有什麼應用與實驗 B 的熱引擎類似?

熱力學實驗 第 17 頁,共 18 頁

附錄一、熱輻射體之溫度與電阻值換算表

Therm. Res. (Ω)	Temp.	Therm. Res. (Ω)	Temp.								
207,850	10	66,356	34	24,415	58	10,110	82	4,615.1	106	2,281.0	130
197,560	11	63,480	35	23,483	59	9,767.2	83	4,475.0	107	2,218.3	131
187,840	12	60,743	36	22,590	60	9,437.7	84	4,339.7	108	2,157.6	132
178,650	13	58,138	37	21,736	61	9,120.8	85	4,209.1	109	2,098.7	133
169,950	14	55,658	38	20,919	62	8,816.0	86	4,082.9	110	2,041.7	134
161,730	15	53,297	39	20,136	63	8,522.7	87	3,961.1	111	1,986.4	135
153,950	16	51,048	40	19,386	64	8,240.6	88	3,843.4	112	1,932.8	136
146,580	17	48,905	41	18,668	65	7,969.1	89	3,729.7	113	1,880.9	137
139,610	18	46,863	42	17,980	66	7,707.7	90	3,619.8	114	1,830.5	138
133,000	19	44,917	43	17,321	67	7,456.2	91	3,513.6	115	1,781.7	139
126,740	20	43,062	44	16,689	68	7,214.0	92	3,411.0	116	1,734.3	140
120,810	21	41,292	45	16,083	69	6,980.6	93	3,311.8	117	1,688.4	141
115,190	22	39,605	46	15,502	70	6,755.9	94	3,215.8	118	1,643.9	142
109,850	23	37,995	47	14,945	71	6,539.4	95	3,123.0	119	1,600.6	143
104,800	24	36,458	48	14,410	72	6,330.8	96	3,033.3	120	1,558.7	144
100,000	25	34,991	49	13,897	73	6,129.8	97	2,946.5	121	1,518.0	145
95,447	26	33,591	50	13,405	74	5,936.1	98	2,862.5	122	1,478.6	146
91,126	27	32,253	51	12,932	75	5,749.3	99	2,781.3	123	1,440.2	147
87,022	28	30,976	52	12,479	76	5,569.3	100	2,702.7	124	1,403.0	148
83,124	29	29,756	53	12,043	77	5,395.6	101	2,626.6	125	1,366.9	149
79,422	30	28,590	54	11,625	78	5,228.1	102	2,553.0	126	1,331.9	150
75,903	31	27,475	55	11,223	79	5,066.6	103	2,481.7	127		
72,560	32	26,409	56	10,837	80	4,910.7	104	2,412.6	128		
69,380	33	25,390	57	10,467	81	4,760.3	105	2,345.8	129		

熱力學實驗 第 18 頁,共 18 頁